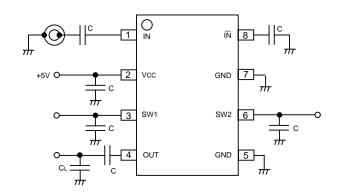
SILICON MMIC 3.0 GHz DIVIDE- BY- 64/128/256 PRESCALER

UPB1505GR

FEATURES


- WIDE BAND APPLICATION: 0.5 to 3.0 GHz
- LOW CURRENT CONSUMPTION: 14 mA at 5 V TYP.
- MULTIPLE DIVIDE RATIOS: 64/128/256
- HIGH INPUT SENSITIVITY:
 - -14 to +10 dBm @ 1.0 GHz to 2.7 GHz
- OUTPUT VOLTAGE: 1.6 Vp-p (CL = 8 pF load)
- SMALL SOP 8 PIN PACKAGE
- TAPE AND REEL PACKAGING AVAILABLE

DESCRIPTION

The UPB1505GR is a Silicon MMIC Prescaler manufactured using the NESAT III process. The NESAT III process produces transistors with f τ approaching 20 GHz. The device's 3 GHz operating range makes it suitable for wide-dynamic range DBS satellite receivers, compressed video or spread-spectrum receivers.

NEC's stringent quality assurance and test procedures ensure the highest reliability and performance.

TEST CIRCUIT

		SW2		
		5 V	Open	
SW1	+5 V	1/64		
3001	Open	1/128	1/256	

Notes:

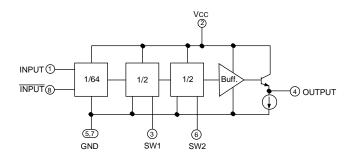
- All Capacitors are 1000 pF except load capacitor (CL) at the output should be 8 pF.
- To minimize self-oscillation, circuit board traces to the input and output pins should be isolated from each other as much as possible.

ELECTRICAL CHARACTERISTICS (TA = -40 to +85°C, Vcc = 4.5 to 5.5 V)

	PART NUMBER PACKAGE OUTLINE			UPB1505GR G08	
SYMBOLS	PARAMETERS AND CONDITIONS	UNITS	MIN	TYP	MAX
Icc	Circuit Current (no signal)	mA	9	14	19.5
fin	Input Frequency at PIN = -14 to -10 dBm PIN = -10 to +8dBm PIN = +8 to +10 dBm	GHz GHz GHz	1.0 0.5 1.0		2.7 3.0 3.0
Pin	Input Power at fin = 0.5 to 1.0 GHz fin = 1.0 to 2.7 GHz fin = 2.7 to 3.0 GHz	dBm dBm dBm	-10 -14 -10		+8 +10 +10
Vout	Output Voltage Swing, ZL = 2.2 KΩ // 8 pF	VP-P	1.3	1.6	
VDH	Divide Ratio Control, Input High (SW1 or SW2)	V		Vcc	
Vdl	Divide Ratio Control, Input Low (SW1 or SW2)	V		OPEN	

ABSOLUTE MAXIMUM RATINGS¹ $(T_A = 25^{\circ}C)$

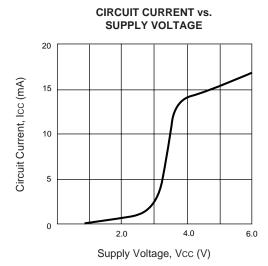
SYMBOLS	PARAMETERS	UNITS	RATINGS
Vcc	Supply Voltage	V	-0.5 to 6.0
Vin	Switch Input Voltage	V	-0.5 to Vcc + 0.5
Pb	Power Dissipation ²	mW	250
Тор	Operating Temperature	°C	-40 to +85
Тѕтс	TsTG Storage Temperature		-55 to +150

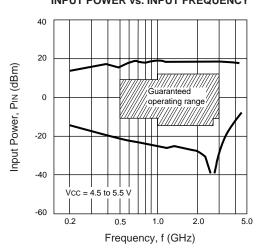

Notes:

- 1. Operation in excess of any one of these parameters may result in permanent damage.
- 2. Mounted on 50 x 50 x 1.6 mm epoxy glass PWB, $(TA = 85^{\circ}C)$.

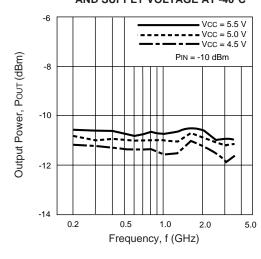
RECOMMENDED OPERATING CONDITIONS

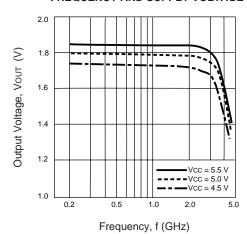
SYMBOL	PARAMETER	UNITS	MIN	TYP	MAX
Vcc	Supply Voltage	V	4.5	5.0	5.5
Тор	Operating Temperature	°C	-40	+25	+85

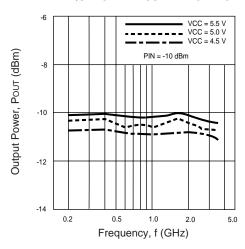

INTERNAL BLOCK DIAGRAM

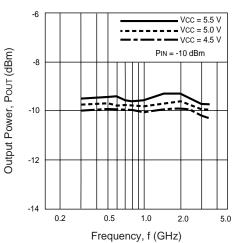

PIN DESCRIPTIONS

PIN NO.	SYMBOL	ASSIGNMENT	FUNCTIONS AND APPLICATION
1	IN	RF Input pin	Input frequency from an external source. Must be coupled with capacitor (~1000 pF).
2	Vcc	Power supply pin	Supply voltage: 5.0 ± 0.5 V. This pin must be decoupled with a capacitor (~1000 pF).
3	SW1	Divide ratio control input pin 1	SW2 H L
6	SW2	Divide ratio control input pin 2	SW1 H 1/64 L 1/128 1/256
4	OUT	Divided frequency output pin	Output frequency. Must be coupled with capacitor (~1000 pF).
5	GND	Ground pin	This pin must be connected to the system ground with minimum inductance. Ground pattern on the board should be formed as wide as possible. (Trace
			length should be kept as short as possible.)
8	ĪN	Frequency-input bypass pin	This pin must be bypassed to ground through a capacitor (~1000 pF).

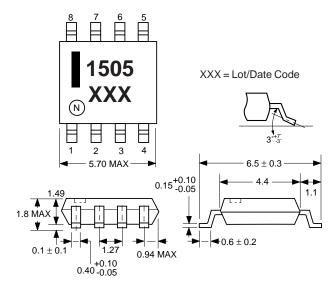

TYPICAL PERFORMANCE CURVES (Unless otherwise specified TA = 25°C)


INPUT POWER vs. INPUT FREQUENCY


OUTPUT POWER vs. INPUT FREQUENCY AND SUPPLY VOLTAGE AT -40°C


OUTPUT VOLTAGE vs. INPUT FREQUENCY AND SUPPLY VOLTAGE

OUTPUT POWER vs. INPUT FREQUENCY AND SUPPLYVOLTAGE



OUTPUT POWER vs. INPUT FREQUENCY AND SUPPLY VOLTAGE AT +85°C

OUTLINE DIMENSIONS (Units in mm)

UPB1505GR PACKAGE OUTLINE G08

Lead Material: Alloy 42 Lead Plating: Lead-Tin Alloy PIN

CONNECTION

DESCRIPTION

I. IN
Signal Input
DC Supply Voltage
DC Supply Voltage
Divide Ratio Control #1*
DUT
Signal Output
Ground

6. SW 2 Divide Ratio Control #2*

7. GND Ground

8. IN Signal Input Reference

ORDERING INFORMATION

PART NUMBER	QUANTITY
UPB1505GR-E1	2500/REEL

Embossed Tape, 12 mm wide.

^{*} See Test Circuit